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J .  Phys. A :  Gen. Phys., 1971, Vol. 4. Printed in Great Britain 

Crystal structure and melting in a cell model 
11. First-order transitions and metastable states 

D. J. GATEST 
JIathematics Department, Imperial College, London SW7, England 
1WS. receiz'ed 30th Decembev 1970 

Abstract. The detailed thermodynamics of the cases of the cell model in 
paper I is considered. The one-dimensional systems have a first-order melting 
transition if the interactions extend beyond nearest-neighbour cells, The 
nearest-neighbour case has a second-order transition. First-order transitions 
also occur for a triangular lattice with nearest-neighbour interactions, a square 
lattice with first- and second-neighbour interactions, and others. The is0- 
therms for the first-order transitions closely resemble those obtained numerically 
for a hard square lattice gas by Bellemans and Nigam. The antiferromagnetic 
version of the cell model on a triangular lattice has two different ordered states 
and two transitions. Metastable states are defined and located for both the 
fluid and crystalline phases, and have some surprising features, 

1. Introduction 
A simple model of melting which has been the subject of some recent work is the 

lattice gas of hard particles, which we shall call the hard c o w  lattice gas (hclg). In  this 
model the particles can move from site to site on a lattice, but are prevented from 
approaching each other too closely by a repulsive potential of infinite strength. For 
the special case where the hard core extends to nearest-neighbour sites on a square 
lattice, numerical analysis (Gaunt and Fisher 1965, Gaunt 1966) suggests that there 
is a second-order melting transition. If, however, the hard core extends to third 
neighbours numerical analysis (Bellemans and Nigam 1967) suggests that there is a 
melting transition of the first order. (The case of second neighbours is in doubt.) 

Why should the second-order transiton be peculiar to the near-neighbour models? 
This puzzling question has not yet been answered. (Furthermore, it is not known for 
certain that the transitions are of the suspected types since no rigorous proofs yet 
exist.) In  this paper we show (rigorously) that precisely the same peculiarity is 
possessed by the cell model considered in paper I (Gates 1971a) and introduced in 
a previous paper (Gates 1971b to be referred to as ESCM). 

I n  ESCM it was shown that the special case of this cell model with repulsirre 
nearest-neighbour interactions on a cubic lattice, of any number of dimensions, has a 
second-order melting transition. This case is analogous to the hclg on a square or cubic 
lattice, both of which have a second-order transition according to Gaunt (1966). Like- 
wise the cell model on a bcc lattice with nearest-neighbour interactions gives a 
second-order transition (see paper I, § l), which again agrees with the hclg (Gaunt 
1966). A case not considered by Gaunt is the plane honeycomb lattice, which for the 
cell model has a second-order transition (paper I, 9 1). This corresponds to a hclg 
consisting of hard triangles, which one might expect to again have a second-order 
transition because the core size is small (see Bellemans and Nigam 1967). 

As mentioned above, the numerical work of Bellemans and Nigam (1967) suggests 
that the plane square hclg with a core extending to many neighbours has a first-order 
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melting transition. We prove (in $ 3) an analogous result for the class of one-dimen- 
sional systems considered in paper I, and consequently for the systems isomorphic 
to these systems (paper I, $ 4). The latter include the triangular lattice and the square 
lattice with diagonal interactions (analogous to the second-neighbour hclg). 

Gaunt (1966) however finds that the hclg on a triangular lattice (i.e. hard hexagonal 
particles) has a second-order transition, although this is not rigorously proved. The  
two models therefore appear to have transitions of different order in this case. One 
would expect this to be a rather critical case because, having only first neighbour 
interactions, one might suspect a second-order transition; but, because the particle 
size is fairly large, one might expect a first-order transition. Perhaps some more 
accurate work on the hclg case might be worth while, just to see how complete the 
agreement between the two models is. 

2. Plain triangular lattice, or one-dimensional, second-neighbour lattice 

(4.3) of paper I, for the special case 
In  this section we examine the thermodynamics corresponding to the free energy 

giving 

Then, with the notation of paper I, we obtain for this free energy 

a(p, 2') = CE(E3(ao(p, T )  --&zp2) + 3 x p 2 }  

~ ' ( p ,  T )  = k T b  lg(ilVp)-p) 

(2.2) 

(2.3) 
where 

is the ideal gas free energy, il is the thermal wavelength, and v = 1 or 2 depending 
on which system we are considering. Sow we use the fact that for any function g(p) 
and any constants P and Q 

and 
CE(g(p) + PP + Q )  = CFdp) + Pp +- Q *  (2.4) 

The first equation follows from equation (3.2) of paper I and the second is equa- 
tion (5.6) of ESCRI. Substituting equation (2.3) in (2.2) and using (2.4) gives 

a ( p ,  T )  = A%(&) + Cp 
where 

which we call the reducedfree energy 
a,(q) E CE{E3(q lg -+qz) +#+'I 

and 

2(kT)2  
,4(T) E ~ 

bl 

bl 
B(T)  = -- 

2k T 

As in ESCM, these results imply that there is no critical temperature. The reduced 
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free energy a,(q) completely determines the thermodynamics. To study this we write 

f(d = 77 1g 77 -h2 

E3f(7?) = M, + 81(77)) + M Y  + U T ) )  +U(,+ 63(,)) 

(2.8) 

(2.9) 

S,+S,+6, = 0. (2.10) 

(2.11) 

and obtain from (3.2) of paper I 

where the 8 minimize the right side, subject to 

The variational condition for this minimum yields 

f’(, + 6,) = f’(, -b S,) = f’(7 + SJ). 
At this point it is more convenient to consider the chemical potential 

where 

which we call the reduced chemical potential. T o  calculate pLY(q) we use (2.6) to obtain 

(2.14) 
a 

where NIC means ‘apply the Maxwell construction (or equal area rule) with respect 
to 7) (see Lebowitz and Penrose 1966) to the expression in brackets’. S o w  from (2.9) 
and (2.1 1) we have 

1 Cl.47) = MC - (E3f(,)) + 3, la, 

= f’(q+S1(y)) for all i 
since a,‘+ a,’+ S3‘ = 0. By plotting the function (figure 1) 

(2.15) 

(2.16) 

0 

:o: ( b >  

Figure 1.  Illustration of the functions 6 ( ~ )  and 8 ( ~ )  given in equation (2.17). 
Here r l m l n  2: 0.915. 
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we see that (2.11) has 3 solutions (ignoring permutations of suffices). The first, 
Si(q) = 0 fo: all i and 7, is trivial. The others are of the form 

%(rl)  = U T )  = -S(77) S3(7?) = 2Y71) (2.17a) 

S,(?l) = M17) = %) 63(17) = - 2 m  (2.17 6 )  

where S(q) 2 0 and g(7) > 0. To  find which of these corresponds to the minimum 
in (2.9) we consider the functions 

(2.18) 

These functions are sketched in figure 2, which shows that the minimum in (2.9) 

4(d = w17 - 6) + M17 + 28) 
$(.I> = if(7 + 8) + Qf(r  - 28) * 

I \ \ \  

Figure 2. Illustration of the functions $(?) and 4 ( ~ ) ,  given by equation (2.18) 
showing that +(?I) < &T). 

Figure 3. Sketch of the reduced chemical potential pLT(?) (thick line), which 
gives the true chemical potential through equation (2.12). The shaded areas 

are equal, according to equation (2.22). 

is given by 
17 170 

17 2 170 
(2.19) 

where T~ 1: 0.924 is the value of 7 where the lower branch of d(y) cutsf(y). The  



732 D. J .  Gates 

function $(r) never represents a minimum. We now have 

(2.20) 

which is discontinuous (see figures l ( a )  and 3 ) .  The functions 

2 
d77 

L(77) = 7 E'Y(77) + 377 (2.21) 

P417) = MC/477) (2.22) 
and from (2.14) 

are sketched in figure 3.  The curve ~ ~ ( 7 )  has a flat portion between q1 and q2 .  From 
(2.12) it follows that p(p, T )  against p has a flat portion for 

2 k T q i l ~  < p < 2kT77,ix 

which represents a $first-order phase transition. JVe find that rll 1: 0,840 and 
v2  ci 1.276. If this is compared with the isotherms shown in figures 9 and 11 of 
Bellemans and Nigam (1967) for the first-order transition in a third-neighbour hclg, 
a remarkable similarity will be found. The author is unable to explain this. 

The canonical pressure n(p, T )  can be found as in ESCILI. As there, we obtain 

n ( p ,  T )  = pkT+iy.p2 for p < 2kT77,/y. (2.23) 

so that at the transition densitv 

(2.24) 
% 

Thus the phase diagram is a parabola as in the nearest-neighbour case (equa- 
tion (5.47) of ESCM). Isotherms of n ( p ,  T )  are sketched in figure 4. 

nCp, t )  

Figure 4. Two typical isotherms of the pressure ~ ( p ,  T )  (thick lines), showing 
their continuations (thin lines) and the boundary of the two-phase region 

(broken line). 

The  crystal state (7 > 9.J is here given by (2 .17~) ;  that is, the system has a local 
density n*(y) with two values 

2k T 
fJ *tip, T )  = - 7 7 *  

o! 
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where 
r l*(r l )  = rl + 26(7) 
r - ( 7 )  = 7--V7). (2.25) 

The densities are, according to $ 4  of paper I, arranged as shown in figure 5 .  The 

(0) (6) 

Figure 5 ,  Arrangement of the local densities p +  and p -  for the case (2.1) on 
(a)  the triangular lattice, and (b)  the solvable one-dimensional lattice with first- 

and second-neighbour interactions. 

Figure 6. Sketch of the function a(?), given by equation (2.26) for 7 > v2 .  

function S(7) which determines p+  and p -  is sketched in figure 6. From (2.11) and 
(2.17~~) the complete function for the crystal phase is given implicitly by the equa- 
tion 

which reduces to 
f’(7 + 26) = f ’ (r  - 6) 

36 
7 = 6 +  ___ 

(e36- 1) 
(2.26) 

which we use in 4 6. Only the part 7 > q2 has any significance, while 6 = 0 for fluid 
states (7 < qi). 

3. A class of one-dimensional cases 
In  this section we consider briefly the thermodynamics of the one-dimensional 

model with L-neighbour interactions introduced in paper I, 5 3. We deal with the 
special case 

q(r)  = 0 and KO = 0 (3.1) 

(3 4 
for which the free energy (3.3) of paper I reduces to 

‘ a ( p ,  T) = CE{EL(ao(p, T)-&Lbp2) ++L2bp2) 
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where ao is given by (2.3). Applying (2 .4)  we now obtain 

where 

(W2 A ( T )  = - 
bL 

bL 
kT R(T) E - 

and 

(3 .3)  

( 3 . 4 )  

S o w  we proceed essentially as before. The function ELf(q) is obtained by a con- 
struction like that in figure 1. Here the appropriate construction is the locus of the 
points one Lth of the way along the horizontal chords of f ( q ) .  Again the reduced 
chemical potential pT(q) has a form like that shown in figure 3,  so that the transition 
is again first-order. The  coexistence curve is again a parabola. Kow the crystal state 
has a density .*(y) of the form 

n*(r) = p-r 4’ = 1 

P -  y = 2, ... L (3.6) 
and has period L. 

The lattices isomorphic to cases of the above system have, by definition, the same 
thermodynamics. They also have a local density with two values p +  and p- (under 
conditions (3.1)).  For example, the plane square lattice with diagonal bonds (equa- 
tion (4.5) of paper I), which is isomorphic to the L = 4 case above, has the crystal 
structure shown in figure 7. 

+ - + - +  

+ - + - +  

+ - 3 . - +  

Figure 7.  Arrangement of densities .p + and p - on the square lattice with first- 
and second-neighbour interactions for the case (3.1). 

The two-phase region again corresponds to an interval ql < 7 < q2. From (3 .3)  
and (3 .5)  this in turn corresponds to an interval kTq,/bL < p < kTq2/bL, that is, to 

Thus, if we keep x fixed (i.e. the ‘area’ under K(s)) and let b + 0 and L -+ CO, the 
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transition occurs at higher and higher densities. In  a way, this explains why the con- 
tinuum model (equation (5.2) of paper I) shows no phase transition and no crystal 
state. 

4. Antiferromagnet on triangular and one-dimensional second-neighbour 

I n  ESCM, section 7 a magnetic version of the cell model, in which the cells 
contain spins instead of particles, was considered. I t  was shown that the nearest-neigh- 
bour version of the model on a v-dimensional cubic lattice, with antiferromagnetic 
interactions ( K ,  > 0), results in precisely the NCel-van Vleck (or mean field) theory 
of antiferromagnetism. In the present section we consider the same model on the 
two isomorphic lattices : the plane triangular lattice and the one-dimensional, second- 
neighbour lattice (paper I, $ 4). 

On these lattices the free energy per spin a(p, T ) ,  for an average magnetization per 
spin p (where - 1 < p < l),  is given as in (2.2) by 

where here 

lattices 

a(p, 5”) = CE(E3(a0(p, T )  - - $ x p 2 )  + $ x p 2 )  (4.1) 

which is the free energy per spin of an ideal magnet, and K > 0. The simplification 
leading to (2.5) does not apply here, so that the behaviour of the system is more com- 
plicated. However, the analysis following (2.8) can essentially be applied to (4.1). 
Here we choose, for fixed K and T 

f(p) = a”(p, T)-$atp2. (4.3) 

(4.4) 

The functionf’(p) is sketched in figure 8. Now equation (2.11) is replaced by 

f’(p + 8,) = f’(p + 8,) = f’h + 8 3 )  * 

Figure 8. Sketch of the function r$’(p) (for p > 0), which gives the magnetic 
field H(p)  through equation (4.7), for the antiferromagnet on a triangular lattice. 

The lines marked with a double stroke have equal length (cf. figure 1). 

For Ipl > p a  (see figure S), this has only solutions of the form (2.17). As there, the 
solution corresponding to the minimum (which gives E3f )  is of the form (2.17a), i.e. 

61b) = U P )  = -G) U P )  = W P ) .  (4.5) 
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For Jp [  < p a ,  on the other hand, there is a further solution with all the a i  different, 
and this corresponds to the minimum. The graphical construction which gives all 
the 6 is shown in figure 8. The magnetic field H ( p )  as a function of magnetization p 
(for fixed T )  

( 4 . 4 )  W p )  
H(P) = - 

2 P  
is given by 

H(p) = MC{+'(p) + 2.p: (4.7) 

where +'(p) is shown in figure 8, and MC means, as before, the Llaxwell construction. 
A typical (low temperature) isotherm of H(p) is sketched in figure 9. As indicated 

F 

' I  
pb -.  . . . , .. . , . . . ... P L  

Figure 9. The field H against magnetization p on the triangular-lattice anti- 
ferromagnet, showing the three phases and two transitions. 

there are three states and two transitions. State (1) (high p and H )  has a uniform 
local magnetization n*(y) = p .  State (2) (medium p and H )  has a local magnetization 
with two values p+  and p- arranged as in figure 4. State (3) (low p and H )  has a local 
magnetization with three values pl, p2,  p3 arranged as in figure 2 of paper I. The 
transition (1) + (2) appears from figure 8 to be second order, and the transition 
(2) -f (3) first order, but to establish this properly would require a detailed analysis. 

From figure 8 it is apparent that both transitions have the same NCel temperature; 
that is, the temperature above which the ordered state does not exist for any p .  This 
is given by kTX = 4.. The H-T phase diagram is sketched in figure 10. 

H 
A 

I 

Figure 10. The phase diagram for the triangular-lattice antiferromagnet, showing 
the three phases. 
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The present model does not behave in the same way as the antiferromagnetic 
Ising model on a triangular lattice (Burley 1963, Stevenson 1970). The latter has only 
a single transition. This is probably due to the fact that the local magnetization (i.e. 
spin) on each lattice site can have only two values, + 1 and - 1, which does not permit 
the symmetric ordered states attained by the cell model. On the other hand, the classi- 
cal, continuous-spin, Heisenberg model (see Domb 1970) does allow such ordered 
states, so that, possibly, it also has two transitions. 

The particle system on the same lattice has a similar behaviour if the short-range 
potential q(r )  has a hard core (unlike 4 2 where q = 0). Roughly speaking this is 
because, for such a q, the free energy ao(p, T )  has an increasing second p derivative 
for large p, as does (4.2). 

5. Metastable states : nearest-neighbour case 

ESCM was given there by 
The chemical potential p(p, T )  of the nearest-neighbour cell model considered in 

p(p ,  T )  = kTP; - + C ( T )  (5.1) (3 
where ~ ~ ( 7 )  has the form shown in figure 11, CI = 2vK(1) > 0 and C is given by (2.7). 
This system has a fluid state for 7 < 1 i.e. p < kT/u., and a crystal state for 7 > 1, 
i.e. p > kT/cr, with a second-order melting transition at p = kTjx. 

From ESCM it follows that the crystalline part 7 > 1 of the function ~ ~ ( 7 )  
cannot be continued analytically to 7 < 1: it has in fact a singularity of the form 
(7 - 1)3/2  at 7 = 1. On the other hand, the fluid part 
obvious analytic continuation to all 7 > 1, shown by 

/ 4 / 

7 < 1 of the function has an 
the broken line in figure 11. 

I I ,  
01 / 1 

Figure 11. Stable (continuous line) and unstable (broken line) states for the 
v-dimensional cubic lattice with first-neighbour interactions. There are no 

metastable states. 

The question therefore arises: does this broken line, or any part of it, represent a 
metastable fluid state? T o  answer this question we shall adopt the following definition 
of the metastable free energy: 

Dejinition. If,  for n&(p), the functional G(n, T )  has a local minimum n*(y, p ,  T )  which 
is not an absolute minimum, then the function 

a&, T )  = G(n*, T )  (5 .2)  
i s  called the metastable free energy. 

The ‘local minimum’ here is in the coordinate space of the variables n(yl) ,  
n(y2) ,.., where y l ,  y2 ,  ... are fixed points which make up a unit cell of n. Notice that 
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this definition admits both fluid (n* = p) and crystalline metastable states. To  justify 
the definition properly one would have to show that it followed from a suitable kinetic 
theory of metastability (see Lebowitz and Penrose 1971, in this connection). We 
shall not attempt this here. We note however that similar definitions have been used 
by other authors (Langer 1968). Also, we will show that it yields precisely the usual 
metastable states in the case of the generalized van der Waals equation (see paper I, 
equation ( 2 7 ) )  

~ ( p ,  T )  = CE(ao(p, T ) + $ x ~ ~ ) .  ( 5 . 3 )  
T o  find the general condition that n* be a local minimum of G(n), we expand 

n(y)-n*(y) for some n&(p). This gibes G(n) about n* as a Taylor series in h(y)  

G(n) = G(n*) + Q(h) + O(h3) (5.4) 
where Q is the quadratic form 

1 
Q(h) = lim -- 2 (aE[n*(y)]h(y)2+h(y) 2 K(y-y’)h(y’))  ( 5 . 5 )  

ID, +a /Dl > E D  Y ’ E L ( 1 )  
and 

Here L(1) is the lattice and D is a suitable subset of it, containing ID1 points (see 
paper I and ESCM). There is no term linear in h in (5.4) because n* is a stationary 
point of G. Therefore, a condition that n* be a local minimum of G is that the quadratic 
form Q(h) be positive-dejnite fo r  avzy periodic h(y).  

For the special case of fluid metastable states (n* = p),  (5.5) reduces to 

where 

and 

Here I? is the unit cell of h(y) ,  and I” is the reciprocal lattice corresponding to I’. 
It follows from (5.6) that Q is positive-definite if and only if 

a%~> + R m , n  > 0 (5.8) 
where Rmin is the minimum of I?@). 

Now returning to the van der Waals case ( 5 . 3 ) ,  we have here (see Gates and Pen- 
rose 1970), Rmin = a. Hence from (5.2,4, 6 and 8) it follows that there is a metastable 
free energy. 

for values of p and T where ao + &xp2 is both locally convex (i.e. aO, + U > 0) and differs 
from its convex envelope. This is precisely the usual result. 

Kext we return to the nearest-neighbour case introduced at the beginning of this 
section. In  this case we have R,,, = -2vK(l) = - U and aO,(p) = kT/p .  so that 
(5.8) reduces to p < kT/a .  But this is just the stable fluid state (q < 1) of the system 
(figure 11). Hence the system has no metastable states. The analytic continuation of 
the stable fluid state, represented by the broken line in figure 11, is unstable. 

a m b ,  T )  = aO(p, T)+-&p* ( 5  *9 1 
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6. Metastable states : the triangular lattices 
The two isomorphic systems discussed in 5 2 have more interesting metastable 

states. Here the chemical potential is given by (2.12-14) where pLy(q), the reduced 
chemical potential is shown in figure 3. The fluid isotherm ( q  < ql) has an analytic 
continuation to all 7 > vl, while the crystal isotherm (7 > q z )  has an analytic con- 
tinuation with a branch point at qmin. We shall find that a part, but not all, of each 
of these continuations represents a metastable state. 

The  fluid metastable states are given by (5.8). Here we have 

Rmin = -3K1 = -4% 
and a i  = KT/p, so that (5.8) reduces to p < 2KT/x, that is, q < 1 in figure 12. 

Figure 12. Stable (thick line), metastable (thin line) and unstable (broken line) 
states for the triangular lattice. 

Consequently, we have a metastable fluid state for q1 < q < 1, that is, for 

2kTql/% < p < ZkT/x.. 

To find the metastable crystalline states we must find where the quadratic form 
Q is positive-definite. In the present case (5.5) reduces to (with b 2 Kl) 

l D  
Q(h) = lim 5 2 [aE(n*(y)}h(y)' + 4bh(y)h(y + 1) + 2bh(y)h(y + Z)] (6.1) 

where n*(y) is given by (2.25) and figure 5. Using the (arbitrary) periodicity of h(y), 
this further reduces to 

D+,m y = l  

l M  

+)(o 3 ~ 4  j = 1  

Q(h) = lim - 2 [a+h(3j-2)2+a-h(3j-1)2+a-h(3j)2 

+ 4b{h( 3 j  - 2)h(3j - 1) + h(3j - l)h(3j)  + h(3j)h(3j + 1)) 
+ 2b{h(3j - 2)h(3j) + h(3j - 1)h(3j + 1) + h(3j)h(3j+ 2)}] (6.2) 

where 

Because of the periodicity of h(y), we can replace the term h(3j-2)h(3j- 1) by half 
the sum of itself and h(3j+ l)h(3j+2). Regrouping the terms then gives 

a i  = aO,(p*). (6 .3)  

Q(h) = lim I 2 [R(h(3j-Z), h(3j- l),  h(3j)) 
M + w  9Mj=1 
+R{h(3j+ l) ,  h(3j- l),  h(3j)) 

+R{h(3j+ I), h(3j+2), 4 3 8 1 1  
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where 

where, in turn, x (xl, x2, x3)  and 

A = 3b a -  3b . G :: :I 
The condition that Q be positive-definite therefore reduces to the condition that A 
be a positive-definite matrix. The latter is true if and only if every principal-minor 
determinant of A is positive, which requires that 

a- > 3 b  
a+a-  > (3l1)~ 

a + ~ - ~ - ( 3 h ) ~ ( a +  + 2 ~ - ) + 2 ( 3 b ) ~  > 0. 

Condition (6.7) reduces to n -  < 1. But from (2.26) 

3s 
7 -  =-- < 1 for all S e36 - 1 

(since e"- 1 > x for all x ) ,  so that (6.7) is satisfied along the entire analytic continu- 
ation of the crystal isotherm, that is, (6.7) makes no restrictions. 

The second condition (6.8) reduces to 7 + 7 -  < 1. But again from (2.26) 

so that (6.8) also makes no restriction. 
The third condition (6.9) reduces to 

(6.10) 

7 + 7 - L  7 +  7 -  
which further reduces to 

(1+7- -27]+7]-)(1 -.I-) > 0.  
Since 7 -  < 1, as we have just shown, this becomes 

1 + q -  -27+7- > 0. (6.1 1) 

To  find when this holds we use (2.26) and obtain 

1 + 7 ] -  -27.7- = f ( 3 6 )  
where 

f(x) = 1 +x(ez-  1)-1-2x2e"(e5- 1)-2. (6.12) 

By plottingf(x) for x 
(6.9) holds for 6 > i x , ,  2: 0.83, which from (2.26) corresponds to 

0 we find thatf(x) $ 0 for x >< x,, where x,, N 2.48. Hence 

7 > v3 where qa N 1.06. (6.13) 
This means that the metastable crystalline states occur only in the interval (see 
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figure 12) 
73 < T < 1 2 .  (6.14) 

It turns out, as we now show, that r / 3  coincides with the turning point of the con- 
tinuation i&.(~) of the crystal isotherm. T o  show this we use (2.21, 15, 16, and 17a) 
to obtain 

where 
(Ur" = e'(,) + 3 

e(.?> = l g 7 ) + - 7 + + 1  = lg7- -7) -+1  

since 

It follows from (2.25) that 

But from (2.25 and 26) we have 

S'(,> = ( T +  - T - M T +  +27- -37+7-)  
which on substitution in (6.16) and simplification gives 

1 + 7 -  -27 ; 7 -  
L ' ( 7 )  = 

7 - 7 - 7 -  

(6.15) 

(6.16) 

(6.17) 

(6.18) 

Now 71 > q3 implies 7 > 1, which with (6.10) gives ~ - q + q -  > 0, while 7 - 7 - 7 -  
is also clearly finite. The numerator in (6.18) is, as just shown, positive for 7 > q3  
and zero at q 3 .  Hence j 1 7 ( ~ )  has its turning point at y3,  mhich is what me wished to 
prove (see figure 12). 

I'arious points about the above metastable states are of interest: 
(i) As in the van der TYaals equation, these states do not extend outside the two- 

phase region yl < q < qz. Is this true of metastable states in general? 
(ii) The  metastable states, as in the van der Waals equation, do not meet: there is 

a small interval 1 < 7 < 773  where there is no such state. Is this true of metastable 
states in general? 

(iii) All the metastable isotherms have positive gradient, that is, are thermody- 
namically stable. Is this true in general? It is certainly true for all cases of the 
present model (and of the continuum model: Gates and Penrose 1969, 1970), because 
from (5.2, 5.4 and 5.5) me have 

(6.19) 

which is positive when Q is positive-definite, that is, in all metastable states (an 
argument due to 0. Penrose). 

(iv) Unlike the van der Waals equation, not all of the continuations of the states 
with positive gradient are metastable (i.e. the Auid continuation for > 1 and the 
upper branch of the crystal continuation). Do unstable states such as these differ 
thermodynamically from unstable states of negative gradient : for example, are they 
less unstable in some sensei 

(v) The crystal metastable state extends (as in the van der Waals equation) up to 
a turning point. Does this always happen when there is such a turning point? 
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7. Discussion 
We have shown that for a variety of lattices the cell model has a first-order melting 

transition, unlike the lattices mentioned in $ 1 which have a second-order melting 
transition. There is a close similarity, as far as order of transition is concerned, 
between this model and the hclg. The common feature is that short-range interactions 
(i.e. small particles) result in second-order transitions, while longer-range interactions 
(i.e. larger particles) result in first-order transitions. Cases where they possibly 
differ are the triangular lattice (Gaunt 1966) and the second-neighbour hard-square 
case (Bellemans and Xgam 1967, Chestnut and Ree 1967), which suggests that a more 
accurate analysis of the hclg cases may be worth while. I t  might also be helpful to 
study the pseudo-hard-squares models of Fisher (1963) and Baxter (1970) on a 
triangular lattice. 

The  isotherms, and their continuations, for the first order melting transitions 
(see figures 3 and 12 for the triangular case) show a remarkable similarity to those 
obtained by Bellemans and Nigam (1967) for a hard-square lattice gas. Perhaps other 
models (for example, hard discs) have isotherms of a similar form. If so, why? 

hIany extensions of the present work are possible. One could study the anti- 
ferromagnet on a triangular lattice ($  4) in more detail, and determine rigorously the 
nature of the two transitions. One might also look for experimental evidence of such 
transitions. The  antiferromagnetic version of the one-dimensional cases of $ 3 (and 
the related two- and three-dimensional cases) has a large number of transitions between 
different ordered states, and these might be worth studying. Also, the questions about 
metastable states at the end of $ 6 present many opportunities for further work. 

The correlation functions for the triangular lattices can be dealt with as in ESC5.I. 
The short-range distribution function 6; considered in ESChI shows no crystalline 
order, but the long-range distribution function 6; does, just as in ESCM. Both of 
these functions have a two-phase form(see equation (13) of Gates 1970) in the two-phase 
region. The  weighted Ursell function zir considered in ESCM was shown there to 
have the Ornstein-Zernike form for both crystalline and fluid states, and to become 
long-range as these states approached the second-order transition point. For the 
triangular lattice it turns out that 6; becomes long-range not at the transition points 
77 = v1 and ri2 (see figure 12), but at the points 77 = 1 and q 3  where the metastable 
isotherms end, that is, become unstable. This is just what happens in the van der 
Waals equation (equation (18) of Gates 1970). It seems therefore that in general this 
kind of long-range order occurs only when a system becomes strictly unstable. 
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